Totally geodesic Seifert surfaces in hyperbolic knot and link complements, II

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Totally Geodesic Seifert Surfaces in Hyperbolic Knot and Link Complements Ii

We generalize the results of [AS], finding large classes of totally geodesic Seifert surfaces in hyperbolic knot and link complements, each the lift of a rigid 2-orbifold embedded in some hyperbolic 3-orbifold. In addition, we provide a uniqueness theorem and demonstrate that many knots cannot possess totally geodesic Seifert surfaces by giving bounds on the width invariant in the presence of s...

متن کامل

Totally Geodesic Seifert Surfaces in Hyperbolic Knot and Link Complements I Colin Adams and Eric Schoenfeld

The first examples of totally geodesic Seifert surfaces are constructed for hyperbolic knots and links, including both free and totally knotted surfaces. Then it is proved that two bridge knot complements cannot contain totally geodesic orientable surfaces.

متن کامل

Hyperbolic Knot Complements without Closed Embedded Totally Geodesic Surfaces

It is conjectured that a hyperbolic knot complement does not contain a closed embedded totally geodesic surface. In this paper, we show that there are no such surfaces in the complements of hyperbolic 3-bridge knots and double torus knots. Some topological criteria for a closed essential surface failing to be totally geodesic are given. Roughly speaking, sufficiently ‘complicated’ surfaces can ...

متن کامل

Compressing totally geodesic surfaces

In this paper we prove that one can find surgeries arbitrarily close to infinity in the Dehn surgery space of the figure eight knot complement for which some immersed totally geodesic surface compresses. MSC: 57M25, 57M50

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2008

ISSN: 0022-040X

DOI: 10.4310/jdg/1207834655